2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как видит глаз человека

Зрение как оно есть

Рассказываем, как мозг помогает нам видеть окружающий мир

В самом простом смысле зрение — это в первую очередь два глаза, которые получают и обрабатывают информацию об окружающем нас мире. На самом деле человеческое зрение, разумеется, устроено гораздо сложнее, и информация от органов чувств (то есть глаз) проходит несколько этапов обработки: как самим глазом, так и далее — мозгом. Вместе с офтальмологической клиникой 3Z рассказываем, как зрительная система человека формирует изображение действительности, и объясняем, почему мы не видим мир перевернутым, маленьким, трясущимся и разделенным на две части.

Из школьного курса физики вы можете помнить про линзы — приборы из прозрачного материала с преломляющей поверхностью, способные, в зависимости от своей формы, собирать или рассеивать попадающий на них свет. Именно линзам мы обязаны тому, что в мире существуют фотоаппараты, видеокамеры, телескопы, бинокли и, конечно, контактные линзы и очки, которые носят люди. Человеческий глаз — это точно такая же линза, а точнее — сложная оптическая система, состоящая из нескольких биологических линз.

Проекция объекта через двояковыпуклую линзу

Первая из них — роговица, внешняя оболочка глаза, наиболее выпуклая его часть. Роговица — это вогнуто-выпуклая линза, которая принимает лучи, исходящие из каждой точки предмета, и передает их дальше через переднюю камеру, заполненную влагой, и зрачок к хрусталику. Хрусталик, в свою очередь, представляет собой двояковыпуклую линзу, по форме напоминающую миндаль или сплющенную сферу.

Двояковыпуклая линза — собирающая: лучи, проходящие через ее поверхность, собираются за ней в одну точку, после чего формируется копия наблюдаемого предмета. Интересный момент состоит в том, что изображение объекта, сформированное на заднем фокусе такой линзы, — действительное (то есть соответствует тому самому наблюдаемому предмету), перевернутое и уменьшенное. Изображение, которое формируется за хрусталиком, поэтому, точно такое же.

То, что изображение уменьшенное, позволяет глазу видеть объекты, по величине в несколько десятков, сотен и тысяч раз превосходящие его по размеру. Другими словами, хрусталик компактно складывает изображение и в таком же виде отдает его сетчатке, выстилающей бо́льшую часть внутренней поверхности глаза — места заднего фокуса хрусталика. Вместе роговица и хрусталик, таким образом, — это компонент зрительной системы, который собирает рассеянные лучи, исходящие от объекта, в одну точку и формирует их проекцию на сетчатке. Строго говоря, никакой «картинки» на сетчатке на самом деле нет: это всего лишь следы фотонов, которые затем преобразуются рецепторами и нейронами сетчатки в электрический сигнал.

Внутреннее строение глаза

Этот электрический сигнал затем проходит в головной мозг, где обрабатывается отделами зрительной коры. Все вместе эти отделы отвечают за то, чтобы преобразовать сигналы о расположении фотонов — единственную информацию, которую получает сам глаз — в имеющие смысл образы. При этом мозг — система взаимосвязанная, и за то, как мы воспринимаем то, что происходит в действительности, отвечают не только наши глаза и зрительная система, но и другие органы чувств, способные получать информацию. Мы не видим мир перевернутым благодаря тому, что у нашего вестибулярного аппарата есть информация о том, что мы стоим ровно, двумя ногами на земле, и дерево, растущее из земли, соответственно, перевернутым быть не должно.

Подтверждение этому — эксперимент, который поставил на самом себе американский психолог Джордж Стрэттон (George Stratton) в 1896 году: ученый изобрел специальное устройство — инвертоскоп, чьи линзы также могут переворачивать изображение, на которое смотрит тот, кто их носит. В своем устройстве Стрэттон проходил неделю и при этом не сошел с ума от необходимости передвигаться в перевернутом пространстве. Его зрительная система быстро адаптировалась под измененные обстоятельства, и уже через пару дней ученый видел мир таким, каким привык видеть его с детства.

Другими словами, в мозге нет специального отдела, который переворачивает изображение, поступившее на сетчатку: за это отвечает вся зрительная система головного мозга, которая, с учетом информации от других органов чувств, позволяет нам точно определить ориентацию объектов в пространстве.

Что касается самой сетчатки, то для того, чтобы понять, как работает зрение, нужно также подробнее рассмотреть ее функционирование и строение. Сетчатка представляет собой тонкую многослойную структуру, в которой находятся нейроны, принимающие и обрабатывающие световые сигналы от оптической системы глаза и отправляющие их друг другу и в мозг для дальнейшей обработки. Всего в сетчатке выделяют три слоя нейронов и еще два слоя синапсов, получающих и передающих сигналы от этих нейронов.

Первые и главные нейроны, участвующие в обработке светового стимула, — это фоторецепторы (светочувствительные сенсорные нейроны). Два основных вида фоторецепторов в сетчатке — это палочки и колбочки, получившие свои название за палочко- и колбочкообразную форму, соответственно. Палочки и колбочки заполнены светочувствительными пигментами — родопсином и йодопсином соответственно. Родопсин в разы чувствительнее к свету, чем йодопсин, но только к свету с одной длиной волны (около 500 нанометров в видимой области) — именно поэтому палочки, содержащие родопсин, отвечают за зрение человека в темноте: они улавливают даже мельчайшие лучи, помогая нам различать очертания предметов, при этом не позволяя точно определить их цвет. А вот за цветовосприятие уже как раз отвечают «дневные» фоторецепторы — колбочки.

Светочувствительный йодопсин, входящий в состав колбочек, бывает трех видов в зависимости от того, к свету с какой длиной волны он чувствителен. В нормальном состоянии колбочки человеческого глаза реагируют на свет с длинной, средней и короткой волной, что примерно соответствует красно-желтому, желто-зеленому и сине-фиолетовому цветам (а если проще — красному, зеленому и синему). Колбочек, которые содержат тот или иной вид йодопсина, в сетчатке разное количество, и их баланс как раз и помогает различать все краски окружающего мира. В случае, когда колбочек с тем или иным видом йодопсина, недостаточно или просто нет, говорят о наличии дальтонизма — особенности зрения, при котором недоступно распознавание всех или некоторых цветов. Вид дальтонизма напрямую зависит от того, какие именно колбочки «не работают», но самым распространенным у человека считается дейтеранопия — при ней отсутствуют колбочки, чей йодопсин чувствителен к свету со средней длиной волны (то есть плохо воспринимают зеленый цвет или не воспринимают его вообще).

Читать еще:  Как правильно красить глаза

Красное яблоко при нормальном зрении и яблоко при дейтеранопии

Зрение — как видит человек

Английский натуралист и путешественник Чарлз Дарвин побывав на острове Фиджи, рассказывал своим коллег что его коренные жители очень удивлялись лодочкам белых колонистов, но совершенно не замечали огромных кораблей, проплывавших поблизости. Дело в том, что островитяне никогда не видели таких плавучих громадин, и их мозг отказывался воспринимать изображение, ведь он «не знал» что такие большие «лодки» существуют. Выходит, что мы видим мир не таким, каким мы его вид! а таким, каким мы его знаем! А как видят мир животные?

Мы думаем глазами

У всех позвоночных, в число которых входит и человек, глаз неразрывно связан с мозгом. От нервных клеток сетчатки отходят длинные нервные отростки. В одном месте сетчатки они собираются в пучок и образуют зрительный нерв, с помощью волокон которого в мозг поступает зрительная информация. Иными словами, изображение предмета первым делом попадает на те клетки, которые его осмысливают, а потом уже осмысленное изображение передаётся дальше. Можно сказать, что мы думаем глазами, комбинируя из пятен и линий знакомые образы предметов.
Глаза большинства позвоночных животных устроены точно так же, а вот другие обитатели фауны смотрят на мир совершенно иначе. Натуралистов всегда удивлял тот факт, что глаз кальмара и осьминога даже своим выражением очень похож на человеческий, не говоря уже о том, что по своему строению он просто является его копией. У него есть веки, склера, радужная оболочка, хрусталик, сетчатка. Различие состоит лишь в том, что фотоэлементы на сетчатке глаза кальмара лежат не под нервными клетками, а над ними. Вот кто действительно видит мир в неприукрашенном свете! Мозг не опережает зрение, строя тот или иной образ, а лишь улавливает попавшее в глаз изображение предмета.
У лягушки большая часть зрительных восприятий, минуя мозг, направляется прямо в рефлекторный центр и к мышцам, что позволяет квакше с молниеносной скоростью хватать пролетающих мух. Впрочем, понять или испытать, как устроена нервная система лягушки, мы можем и на себе. Когда психологи спросили у диспетчера авиалиний, о чём он думает, глядя на экран, тот ответил: «Мне некогда думать, я смотрю и реагирую». Аналогичным ощущением могут поделиться и любители несложных компьютерных игр, например тетриса. Во время игры им некогда думать, они реагируют…

Земноводные и позвоночные

Помните, раньше во всех фотоателье были такие громоздкие фотоаппараты на трёх ножках? Так вот, строение глаза вполне можно сравнить с этим ящиком-фотокамерой. Полость глазного яблока соответствует тёмному пространству ящика. Сетчатка, как и фотоэмульсия в камере, фиксирует изображение. В камере есть отверстие — это зрачок. Он окружён радужкой — диафрагмой, которая, сжимаясь, пропускает в глаз необходимое количество света. В сумерках зрачок раскрыт, при ярком солнце — сужен. Кто хоть раз фотографировал, знает, что фокус в фотоаппарате постоянно приходится менять: то удалять, то приближать объектив к светочувствительной плёнке. Точно так же устроены глаза каракатиц, костистых рыб и земноводных. Когда они смотрят вдаль, хрусталик-линза «отъезжает» вперёд, а когда рассматривают что-нибудь вблизи, глазные мышцы тянут его назад — к сетчатке.
А вот у большинства позвоночных хрусталик не ползает взад-вперёд, как объектив в фотокамере, он либо сжимается в шарик, либо растягивается и меняет фокусировку пронзающих его лучей света. С течением времени хрусталик теряет упругость. Свойственная человеку близорукость или дальнозоркость точно так же может развиться и у животных. Многие млекопитающие и вовсе появляются на свет дальнозоркими или близорукими, хотя последних намного меньше.

Чёрно-белое кино

Когда мы смотрим на что-нибудь, в глаза попадают лучи света. Они проходят сквозь роговицу, жидкость, находящуюся между ней и радужкой, хрусталик и стекловидное тело, и, только преломившись в каждой из этих сред, лучи попадают на светочувствительные клетки сетчатки: колбочки и палочки.
Колбочки реагируют на разные цвета и яркие лучи, а палочки функционируют в сумерках, когда света мало. У животных, ведущих ночной образ жизни, больше палочек, а у тех, кто ведёт дневной образ жизни, — колбочек.
Цветное зрение существует далеко не у всех млекопитающих. Так что не верьте рассказам о том, что быки впадают в ярость при виде красного цвета — они его не различают. По всей видимости, черно-белым «кино» довольствуются и домашние любимцы — кошки и собаки. Но зато они прекрасно видят в темноте, что в общем-то неудивительно, ведь их предки вели ночной образ жизни.
Зрачок ночных животных закрывается более плотно, чем, скажем, человеческий, и тем предохраняет глаз от попадания чрезмерно яркого света.
К тому же оболочка глаза многих животных — от акул до млекопитающих — образует «зеркальце». Оно помогает сберечь дефицитные в ночное время лучи света и возвратить их на сетчатку. Кстати, вы наверняка видели, как светятся в темноте глаза кошки. Так вот, этот светящийся «прибор ночного видения» и есть зеркальце.

Они различают цвета!

Если вы когда-нибудь пытались убить муху, то могли заметить, что это очень зоркое и проворное насекомое. Во всяком случае, складывается такое впечатление, что реакция у неё раз в десять лучше человеческой. Всё дело в том, что глаз мухи состоит из тысяч шестигранных линз-хрусталиков, под которыми скрывается огромное количество светочувствительных клеток. Каждая из этих клеток передаёт в мозг своё независимое изображение, и уже в мозге мозаичное панно собирается в единую картину. Другими словами, глаз насекомых состоит из тысяч простых глазков, покрытых одной прозрачной роговицей.
Впрочем, помимо уникальной зоркости, насекомым досталась ещё и способность различать цвета. Так, тля отличает красный цвет от синего, а зелёный от фиолетового. Шведскую мушку очень привлекают голубые оттенки на зелёном фоне. Муравьи хорошо различают недоступные нам ультрафиолетовые лучи. Пчёлы видят четыре цвета: красно-жёлтый, сине-зелёный, сине-фиолетовый и ультрафиолетовый! А белая, невзрачная, на наш взгляд, бабочка предстаёт перед самцом в удивительных красках: в ультрафиолетовом свете ему прекрасно виден узор на её крыльях.

Читать еще:  Основные рекомендации по покупке и применению компрессионных колгот

Третий глаз

Журнал: Все загадки мира №15, 22 июля 2019 года
Рубрика: Живая планета
Автор: Макс Маслин

Почему глаз видит все перевернутым

Глаз человека – удивительный орган. Он способен превращать электромагнитное излучение (свет) в картинку. Мы видим окружающий мир благодаря многоступенчатого процессу, протекающему в глазах и в мозге.

Оптическая система глаза — как устроена

Человеческий глаз устроен настолько сложно, что различает миллион цветовых оттенков, определяет величину предмета и расстояние до него, меняет фокус при взгляде на дальние и ближние объекты, регулирует объем поступающего света. Ювелирная работа глаз обеспечивается их сложным строением.

Глаз подобен айсбергу. На виду остаются только передняя зона, покрытая роговицей – прочной оболочкой, не имеющей кровеносных сосудов. Под ней расположена передняя камера, в центре которой находится радужка со зрачком в центре. За зрачком располагается хрусталик. За ним лежит объемное стекловидное тело, составляющее большую часть глаза. Оно состоит из гелеобразного вещества, служит для поддержания формы глазного яблока и проведения световых лучей.

На задней поверхности глаза, за стекловидным телом, находится сетчатка – светочувствительный слой клеток, воспринимающий картинку. К ней подходит зрительный нерв, соединяющийся с головным мозгом. Нерв передает импульсы в центральную нервную систему.

Так выглядит оптическая система глаза в упрощенном виде.

Работа глаз

Световой луч падает на какой-либо предмет в окружающем мире и отражается от него, попадая на роговицу, а затем в зрачок. Тот, расширяясь или сужаясь, регулирует поток света, отсеивая лишние лучи. Благодаря работе зрачка человек может видеть как на ярком свету, так и в темноте.

Через зрачок луч попадает на хрусталик – двояковыпуклую линзу. Задача этого органа – преломить луч и направить его на сетчатку. Благодаря хрусталику человеческий глаз способен к аккомодации. Так называется изменение кривизны лучей для обеспечения видимости на дальних и ближних расстояниях. Аккомодация позволяет видеть звезды на ночном небе и мелкие пылинки вблизи.

Пройдя через хрусталик и изменив траекторию, световой луч достигает сетчатки – самой сложной глазной структуры. Она состоит из клеток-фоторецепторов, способных принимать фотоны. На ней формируется изображение, но оно меньше настоящего и перевернуто вверх ногами.

Фоторецепторы превращают световые лучи в электрические импульсы, которые по волокнам зрительного нерва передаются на кору полушарий головного мозга. При этом каждый глаз воспринимает собственную картинку, а мозг накладывает их друг на друга и превращает в одну.

Почему изображение отпечатывается на сетчатке перевернутым

Ответ на этот вопрос можно получить, если вспомнить школьный курс физики, раздел «Оптика». Согласно законам этой науки любой световой луч, проходящий через криволинейную поверхность, преломляется, и при этом изображение с обратной стороны становится перевернутым.

В глазах сразу две криволинейные поверхности: роговица и хрусталик. Поэтому преломление происходит целых три раза:

  • первое – при переходе света через роговицу (картинка переворачивается);
  • второе – при прохождении через переднюю поверхность хрусталика (картинка становится нормальной);
  • третье – при прохождении через заднюю выпуклую часть хрусталика (изображение снова переворачивается и поступает в таком виде на сетчатку).

Тройное переворачивание – не необходимость, а просто следствие естественных физических законов. Световой луч не может пройти через линзу, не изменив траекторию, и не сформировав перевернутую картинку.
Удивительно, насколько тонко работает наш мозг. Он приспособился возвращать изображению нормальность. Иначе мы бы видели небо внизу, а землю наверху.

Процессы преломления и восприятия происходят мгновенно. Были проведены эксперименты, показавшие, что от попадания луча на роговицу до восприятия правильного изображения мозгом проходит 13 миллисекунд. Глазные яблоки делают 3 движения в секунду, смотря на разные объекты. Мозг должен успевать за ними: трансформировать картинку в правильную, делать выводы и отдавать команду, куда смотреть дальше.

Таким образом, мы видим все в перевернутом виде, и лишь сложная работа мозга позволяет привести поступающую от глаза картинку в соответствие с реальностью.

Теперь вы можете представить, насколько тонкий зрительный прибор находится у нас в организме. За его здоровьем необходимо следить, иначе он, как и любой прибор, может прийти в негодность. Помочь привести в порядок ваш зрительный аппарат способны врачи клиники Клин Вью. Здесь к вашим услугам самая современная техника и грамотные специалисты! Обращайтесь!

Человеческое зрение — из чего состоит глаз и как он работает

Человеческое зрение — важная чувствительная функция визуализации окружающих человека объектов путем восприятия видимого спектра электромагнитных волн глазом и дальнейшей их обработки в области головного мозга.

Зрение, в сочетании с таким не менее важным органом чувств как слух, закладывает основной фундамент развития человека. Человеческий глаз это самый первый орган, воспринимающий видимый человеком световой диапазон, который впоследствии обрабатывается зрительной корой головного мозга.

Из чего состоит глаз человека?

Итак, вся поступившая внешняя информации в виде видимого спектра электромагнитных волн попадает на выстелающую глазное дно сетчату, которая состоит из множества чувствительных фоторецепторов. О важности данных фоторецепторов в человеческом зрении можно судить исходя от их 70-ти процентного присутствия в человеке на фоне всех остальных рецепторов в других органах человека.

Так называемые глазные яблока располагаются в глазницах, утопленных вглубь человеческого черепа и составляют диаметр около двух с половиной сантиметров. Основная часть глазных яблок скрыта в углублениях черепа — тем самым защищена от внешних механических воздействий, и только незначительная их часть находится снаружи.

Глазные яблоки, выполняющие роль органической оптики, приводятся в движение с помощью шести мышц, которые обеспечивают движение яблока, что позволяет расматривать человеку объекты с максимально доступным углом обозрения. Ведь если бы глазное яблоко не имело бы подобных мышц, то оно было бы неподвижно статичным и угол обзора был бы не таким широким. Глаза в период бодрствования человека с помощью этих мышц сканируют внешнюю картинку под воздействием так называемого глазмного треморра — постоянного дрожания.

Глаз, по сути, это оптическая линза, через которую проходит свет. Он имеет форму сферы и его полость заполнена прозрачным упругим веществом подобным стеклу. Его прозрачность обеспечивает пропускание светового потока к сетчатке, которую можно сравнить с матрицей цифрового фотоаппарата.

Читать еще:  Как подобрать красивую форму бровей

Пропускная способность светового потока человеческого зрения регулируется зрачком глаза. Именно через него попадает свет в необходимом количестве в зависимости от его интенсивности. Пропускная способность регулируется путем расширения и сжатия зрачка. Как и в любой оптической системе при слабом свете зрачок максимально расширяется для того, чтобы можно было принять света максимум из возможного и сужается в случае, если если мощность светового потока высокая и достаточно лишь его часть для последующего его попадания на сетчатку, тем самым обезопасив ее от повреждения излишне ярким светом.

Это изображение сетчатки (светочувствительной оболочки глаза, выстилающей глазное дно) в разрезе. Палочки и колбочки реагируют на свет и по нервным волокнам посылают импульсы в головной мозг.

Схема человеческого глаза в разрезе

Лучи света попадают в зрачок через роговицу — переднюю прозрачную часть наружной оболочки глаза. Роговица является сильной преломляющей линзой. Радужная оболочка регулирует количество проникающего в глаз света, что позволяет видеть как при тусклом, так и при ярком свете. Хрусталик фокусирует на сетчатке свет от ближних и дальних предметов. Центральная ямка сетчатки — область наибольшей остроты зрения.

На рисунке глаз представлен в разрезе. Прежде чем попасть в зрачок, световой поток проходит через роговицу глаза. Она представляет собой ничто иное как прозрачную сферическую линзу, проходя через которую, лучи света преломляются.

Первым фильтром, который регулирует световой потом прежде чем попасть в зрачок, является радужная оболочка глаза. С ее помощью человек способен видеть как в светлое, так и в темное время суток. Основной органической сферической линзой глаза является хрусталик, с помощью которого попадающий свет от близрасположенных и удаленных предметов фокусируется на сетчатке. Выделяют на сетчатке зону наибольшей остроты зрения — центральную ямку сетчатки.

Существует участок сетчатки, в котором отсутствуют вообще фоторецепторы. В этой области, не воспринимающей световой поток, выходит зрительный нерв. Также эту область называют слепым пятном сетчатки. Данная неактивное в восприятии света слепое пятно сетчатки никаким образом не мешает корректности формирования картинки в зрительной коре головного мозга.

Как работает глаз человека?

Роговица с хрусталиком представляв собой оптические линзы в органическом исполнении, свойства которых знакомы нам из курса школьной физики. Они играют роль фокусирующей оптики светового потока на хрусталике.

А вот за количество попадаемого света на сетчатку, подобно диафрагме фотоаппарата, отвечает радужная оболочка с ее мышцами постоянно изменяющими диаметр зрачка для необходимого дозирования света на сетчатке глаза; уменьшая диаметр — снижает световой поток и пропускает только необходимую порцию света, увеличивая диаметр — увеличивает поток попадаемого света на сетчатку в случае если его мощность слаба и сетчатке необходимо получить как можно больше света для последующего восприятия объекта головным мозгом.

Фоторецепторов палочек насчитывается порядка 125 млн. и они отличаются от кобочек своей сверхчувствительностью к слабому свету, но при этом не воспринимают цветов. Фоторецепторов колбочек насчитывают около 7 млн, и они отвечают за восприятие цветового спектра света, а именно зеленого, красного и синего цвета при условиии обеспечения высокой яркости света. За каждый отдельный цвет отвечает отдельный тип колбочек.

Каждый вид фоторецепторов человеческого зрения — коробочек и колбочек после восприятия свойственного им спектра света формирует импульсы для дальнейшей передачи по зрительному нерву в зрительную кору головного мозга, где после обработки человек получает визуальные изображения. Восприятие окружающих объектов двумя человеческими глазами незначительно отличаются друг от друга. Совмещая полученные изображения от двух глаз алгоритмы зрительной коры головного мозга совмещают картинки в единое трехмерное изображение, которое и позволяет человеку оценить относительную величину объекта и удаленность от него.

Фоторецепторы посылают нервные импульсы в мозг.

Обрабатывая сигналы, мозг снова переворачивает изображение, так что мы все видим правильно.

Слезная жидкость вырабатывается слезными железами. Она омывает поверхность глаза, когда мы моргаем. В слезах содержится убивающий бактерии фермент лизоцим. Через 2 отверстия в углу глаза слезы стекают в слезный проток и по нему — в полость носа.

Дефекты зрения — нарушения физики оптических свойств

Зрительные органы могут обладать врожденной оптической патологией либо приобреать ее в процессе жизни. Наиболее распространенные из них это близорукость или дальнозоркость. Здесь, судя логике названий, все очевидно.

Близорукость

В случае, если человек неспособен различать удаленные объекты, но при этом совершенно четко видит близрасположенные объекты, — называют близорукостью. Неспособность чеко видеть удаленные предметы обусловнена дефектом цилиарной мышцы хрусталика, которая утратила способность достаточного расслабления, вследствие чего световой поток лучей фокусируется не на сетчатке, а перед ней. В итоге близорукий человек видит получаемое изображение удаленного объекта расплывчатым. Современная медицина научилась решать данную проблему путем индивидуального подбора контантных линз или очков с вогнутыми линзами.

Дальнозоркость

С дальнозоркостью все ровным счетом наоборот. Такой дефект сопровождается неспособностью четко видеть близрасположенные предметы. Мышца хрусталика утрачивает физическую способность достаточным образом сжимать хрусталик. Световой фокус в данном случае укладывается позади за границами хрусталика. Эффек тот же, что и в случае с дальнозоркостью, только в отношении близких предметов — расплывчатость. Одним из решением победить близорукость — подобрать очки с выпуклыми линзами.

Дальтонизм и зрительные иллюзии

Также существует дефект отсутствия воприятия цветного спектра света даже при условии нормальной яркости света. Этот дефект называют дальтонизмом или цветовой слепотой.

Существует простой тест-картинка, глядя на которую можно определить сущесвует ли у человека дефект дальтонизма.

Картинка теста на дальтонизм

Эта картинка из цветных точек позволяет провести тест на дальтонизм. У дальтоников отсутствует 1 из 3 видов колбочек, различающих красный, зеленый и синий цвета. Чаще всего дальтонизм не различают красные и зеленые цвета.

Если вы способны разглядеть в этом кружочке цифру 7, значит вы не страдаете цветовой слепотой. У мужчин цветовая слепота встречается чаще, чем у женщин.

Зрительные иллюзии «сбивают с толку» мозг. Обе пары красных линий прямые, но слева они кажутся вогнутыми, а справа выгнутыми наружу. Хотя, повторимся, на самом деле они прямые идущие параллельно друг другу.

Ссылка на основную публикацию
Adblock
detector